Giovanni Cantele

  • Country
  • Show details Hide details

Giovanni Cantele (2016-01-24)

  • Keywords
  • Show details Hide details
density functional theory, condensed matter physics, solid state physics, nanostructures

Giovanni Cantele (2015-11-06)

  • Other IDs
  • Show details Hide details
ResearcherID: A-1951-2009

ResearcherID (2013-04-24)

Scopus Author ID: 6603586378

Scopus - Elsevier (2015-02-18)


The research activity has concerned several aspects of the theoretical modelling of the structural, electronic, optical and transport properties of semiconductor and metal crystals, surfaces, interfaces and low-dimensional nanostructures. Some of the relevant research topics are summarized in the following: - effects of the dimensionality, size and shape in nanocrystalline materials (e.g. silicon nanocrystals, TiO2 nanocrystal and nanowires, etc.) - theroleofthesurfacechemistryandfunctionalizationinthedesignofmultifunctional nanostructures and hybrid organic-inorganic interfaces (TiO2 nanocrystals and nanowires, organic coverage of silicon surfaces, hybrid perovskites, etc., with special focus on properties such as interface barriers and surface work function) - the role of defects in the comprehension and design of the electronic, optical and transport properties of nanostructured materials (graphene and related nanos- tructures, silicon nanocrystals, surfaces and interfaces based on oxide materials such as TiO2, SnO2, SrTiO3, ZnO, etc.) - dielectric screening at the nanoscale. Different theoretical frameworks/approaches are used: - first principles approaches, based on density functional theory and its extensions (e.g. quasi-particle many body approaches for the computation of the excitation spectra), for the study of the material properties and chemistry with microscopic accuracy - semiempirical approaches, such as tight binding, for the study of the electronic and optical properties of semiconductor nanostructures composed by thousands of atoms - effective approaches (effective mass theory, Thomas-Fermi model) for building simple models for the electronic and optical properties of nanostructures The results have been published in about 70 pubblications in peer-reviewed journals and conference proceedings with about 1400 citations (font: Isi Web of Knowledge, November 2015). Significant skills in software programming for scientific calculus, in data analysis and in the management of computer infrastructures for high performance computing have been gained during the research work.
No publications added yet

Record last modified {{lastModifiedDate}}