Personal information

Activities

Works (44)

Non-trivially true statements in computability with the predicate K of the current mathematical knowledge, which do not express the current mathematical knowledge and may be falsified

ScienceOpen Preprints
2024-09 | Journal article
Contributors: Apoloniusz Tyszka
Source: check_circle
ScienceOpen, Inc.
grade
Preferred source (of 2)‎

Constructive Mathematics with the Predicate of the Current Mathematical Knowledge

2024-01-16 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

In Constructive and Informal Mathematics, in Contradistinction to Any Empirical Science, there are Non-Trivially True Statements with the Predicate of the Current Knowledge in the Subject

2023-12-06 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

In Mathematics, in Contradistinction to Any Empirical Science, the Predicate of the Current Knowledge Substantially Increases Its Constructive and Informal Part

2023-10-19 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

In Mathematics, in Contradistinction to Any Empirical Science, the Predicate of the Current Knowledge Increases Its Constructive and Informal Part

2023-10-10 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

The Predicate of the Current Mathematical Knowledge Substantially Increases the Constructive and Informal Mathematics and Why It Cannot Be Adapted to Any Empirical Science

2023-09-22 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

The Predicate of the Current Mathematical Knowledge Substantially Increases the Constructive and Informal Mathematics and Why It Cannot Be Adapted to Any Empirical Science

2023-09-07 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

The Predicate of the Current Mathematical Knowledge Substantially Increases the Constructive and Informal Mathematics and Why It Cannot Be Adapted to Any Empirical Science

2023-08-31 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

The Predicate of the Current Mathematical Knowledge Substantially Increases the Constructive and Informal Mathematics and Why It Cannot Be Adapted to Any Empirical Science

2023-08-15 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

The Predicate of the Current Mathematical Knowledge Substantially Increases the Constructive Mathematics What Is Impossible for Any Empirical Science

2023-08-04 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

<em>The predicate of the current mathematical knowledge increases the constructive mathematics what is impossible for the empirical sciences</em>

2023-07-31 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-05-18 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-05-11 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-04-27 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-04-19 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-04-17 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-03-29 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A Common Approach to Three Open Problems in Number Theory

2023-03-24 | Preprint
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Statements and open problems on decidable sets 𝓧⊆ℕ that refer to the current knowledge on 𝓧

Journal of Applied Computer Science &Mathematics
2022-10-11 | Journal article
Part of ISSN: 2066-4273
Part of ISSN: 2066-3129
Contributors: Apoloniusz Tyszka; Apoloniusz TYSZKA
Source: Self-asserted source
Apoloniusz Tyszka

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

2018-11-16 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

2018-11-13 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

A Hypothetical Upper Bound on the Heights of the Solutions of a Diophantine Equation with a Finite Number of Solutions

2018-04-16 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

A Hypothetical Upper Bound on the Heights of the Solutions of a Diophantine Equation with a Finite Number of Solutions

2018-04-10 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

A New Proof of Smoryński&rsquo;s Theorem

2017-09-27 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

A New Proof of Smoryński&rsquo;s Theorem

2017-09-26 | Other
Contributors: Apoloniusz Tyszka
Source: check_circle
Crossref

Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation

Information Processing Letters
2013 | Journal article
DOI:

10.1016/j.ipl.2013.07.004

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

Does there Exist an Algorithm which to Each Diophantine Equation Assigns an Integer which is Greater than the Modulus of Integer Solutions, if these Solutions form a Finite Set?

2013-07-19 | Journal article
DOI:

10.3233/FI-2013-854

Source: Self-asserted source
Apoloniusz Tyszka

Two conjectures on the arithmetic in R{double-struck} and C{double-struck}

Mathematical Logic Quarterly
2010 | Journal article
DOI:

10.1002/malq.200910004

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

Onθ-definable elements in a field

Collectanea Mathematica
2007 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

A discrete form of the Beckman-Quarles theorem for mappings from ℝ2(ℂ2 script F sign 2 to is a subfield of a commutative field extending ℝ (ℂ)

Journal of Geometry
2006 | Journal article
DOI:

10.1007/s00022-006-0053-1

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

A discrete form of the theorem that each field endomorphism of ℝ (ℚp) is the identity

Aequationes Mathematicae
2006 | Journal article
DOI:

10.1007/s00010-005-2801-y

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

The Beckman-Quarles theorem for continuous mappings from ℂ n to ℂn

Aequationes Mathematicae
2006 | Journal article
DOI:

10.1007/s00010-005-2819-1

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

The beckman-quarles theorem for mappings from ℂ2 to ℂ2

Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis
2005 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

Beckman-Quarles type theorems for mappings from Rn to C n

Aequationes Mathematicae
2004 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

The Beckman-Quarles theorem for mappings from ℝ2 to double-struck F sign2, where F is a subfield of a commutative field extending ℝ

Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
2004 | Journal article
DOI:

10.1007/BF02941526

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

A stronger form of the theorem on the existence of a rigid binary relation on any set

Aequationes Mathematicae
2003 | Journal article
DOI:

10.1007/s00010-003-2676-8

Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

On binary relations without non-identical endomorphisms

Aequationes Mathematicae
2002 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

A discrete form of the Beckman-Quarles theorem for rational eight-space

Aequationes Mathematicae
2001 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

Discrete versions of the Beckman-Quarles theorem

Aequationes Mathematicae
2000 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

A discrete form of the beckman-quarles theorem

American Mathematical Monthly
1997 | Journal article
Contributors: Tyszka, A.
Source: Self-asserted source
Apoloniusz Tyszka via Scopus - Elsevier

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

Source: check_circle
Multidisciplinary Digital Publishing Institute
grade
Preferred source (of 2)‎

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

Source: check_circle
Multidisciplinary Digital Publishing Institute
grade
Preferred source (of 2)‎

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

Source: check_circle
Multidisciplinary Digital Publishing Institute
grade
Preferred source (of 2)‎

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

Source: check_circle
Multidisciplinary Digital Publishing Institute
grade
Preferred source (of 2)‎