Personal information

cybersecurity, machine learning, intrusion detection, data science in security
Belgium

Biography

This is the ORCID profile of Laurens D'hooge, a PhD candidate working at Ghent university at the Internet and Data Science Lab (IDLab), in collaboration with Imec.

I have primarily worked on (network) intrusion detection, but am generally interested in cybersecurity and the application of data science methods within the field.

I work in open source as much as I can, these days primarily as StrGenIx on Kaggle (https://www.kaggle.com/dhoogla). If you need a clean version of an academic security dataset, odds are high that I have published one.

You can follow my updates on ResearchGate: https://www.researchgate.net/profile/Laurens-Dhooge

Activities

Employment (1)

Ghent University: Gent, Oost-Vlaanderen, BE

2018-10-01 to present | PhD student (IDLab: Internet and data science lab)
Employment
Source: Self-asserted source
Laurens D'hooge

Works (15)

Improving Generalization of ML-Based IDS With Lifecycle-Based Dataset, Auto-Learning Features, and Deep Learning

IEEE Transactions on Machine Learning in Communications and Networking
2024 | Journal article
Contributors: Didik Sudyana; Ying-Dar Lin; Miel Verkerken; Ren-Hung Hwang; Yuan-Cheng Lai; Laurens D’Hooge; Tim Wauters; Bruno Volckaert; Filip De Turck
Source: check_circle
Crossref

A Novel Multi-Stage Approach for Hierarchical Intrusion Detection

IEEE Transactions on Network and Service Management
2023 | Journal article
Contributors: Miel Verkerken; Laurens D’hooge; Didik Sudyana; Ying-Dar Lin; Tim Wauters; Bruno Volckaert; Filip De Turck
Source: check_circle
Crossref

Characterizing the Impact of Data-Damaged Models on Generalization Strength in Intrusion Detection

Journal of Cybersecurity and Privacy
2023-04-03 | Journal article
Contributors: Laurens D’hooge; Miel Verkerken; Tim Wauters; Filip De Turck; Bruno Volckaert
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Task Assignment and Capacity Allocation for ML-Based Intrusion Detection as a Service in a Multi-Tier Architecture

IEEE Transactions on Network and Service Management
2023-03 | Journal article
Contributors: Yuan-Cheng Lai; Didik Sudyana; Ying-Dar Lin; Miel Verkerken; Laurens D’hooge; Tim Wauters; Bruno Volckaert; Filip De Turck
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Investigating Generalized Performance of Data-Constrained Supervised Machine Learning Models on Novel, Related Samples in Intrusion Detection

Sensors
2023-02-07 | Journal article
Contributors: Laurens D’hooge; Miel Verkerken; Tim Wauters; Filip De Turck; Bruno Volckaert
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Discovering Non-Metadata Contaminant Features in Intrusion Detection Datasets

2022 19th Annual International Conference on Privacy, Security and Trust, PST 2022
2022 | Conference paper
EID:

2-s2.0-85137751157

Contributors: D'hooge, L.; Verkerken, M.; Wauters, T.; Volckaert, B.; De Turck, F.
Source: Self-asserted source
Laurens D'hooge via Scopus - Elsevier

Establishing the Contaminating Effect of Metadata Feature Inclusion in Machine-Learned Network Intrusion Detection Models

2022 | Book chapter
Contributors: Laurens D’hooge; Miel Verkerken; Bruno Volckaert; Tim Wauters; Filip De Turck
Source: check_circle
Crossref

USB-IDS-1: Trivial to Classify

Ghent University
2022-09-07 | Report | Conceptualization, Data curation, Investigation, Validation, Writing - original draft, Writing - review & editing
Contributors: Laurens D'hooge
Source: Self-asserted source
Laurens D'hooge

CICMalMem2022: Unlikely to be effective

Ghent University, IDLab-Imec
2022-07-30 | Report | Conceptualization, Data curation, Investigation, Validation, Writing - original draft, Writing - review & editing, Methodology
Contributors: Laurens D'hooge
Source: Self-asserted source
Laurens D'hooge

Machine learning based intrusion detection as a service: Task assignment and capacity allocation in a multi-tier architecture

ACM International Conference Proceeding Series
2021 | Conference paper
EID:

2-s2.0-85124794802

Contributors: Lai, Y.-C.; Sudyana, D.; Lin, Y.-D.; Verkerken, M.; D'Hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F.
Source: Self-asserted source
Laurens D'hooge via Scopus - Elsevier

Hierarchical feature block ranking for data-efficient intrusion detection modeling

Computer Networks
2021-12 | Journal article
Contributors: Laurens D’hooge; Miel Verkerken; Tim Wauters; Bruno Volckaert; Filip De Turck
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Unsupervised Machine Learning Techniques for Network Intrusion Detection on Modern Data

2020 4th Cyber Security in Networking Conference, CSNet 2020
2020 | Conference paper
EID:

2-s2.0-85098516607

Contributors: Verkerken, M.; D'Hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F.
Source: Self-asserted source
Laurens D'hooge via Scopus - Elsevier

Inter-dataset generalization strength of supervised machine learning methods for intrusion detection

Journal of Information Security and Applications
2020-10 | Journal article
Part of ISSN: 2214-2126
Source: Self-asserted source
Laurens D'hooge
grade
Preferred source (of 2)‎

Classification Hardness for Supervised Learners on 20 Years of Intrusion Detection Data

IEEE Access
2019 | Journal article
Contributors: Laurens D'hooge; Tim Wauters; Bruno Volckaert; Filip De Turck
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

In-depth Comparative Evaluation of Supervised Machine Learning Approaches for Detection of Cybersecurity Threats

Proceedings of the 4th International Conference on Internet of Things, Big Data and Security
2019 | Conference paper
Source: Self-asserted source
Laurens D'hooge
grade
Preferred source (of 2)‎