Personal information

multilabel classification, imbalance problems, evolutionary computation, neural network design, time series prediction, regression
Spain

Biography

Antonio J. Rivera received the B.Sc. and Ph.D. degrees in computer science from the University of Granada, Granada, Spain, in 1995 and 2003, respectively. He is a Lecturer of computer architecture and computer technology with the Computer Science Department, University of Jaén, Jaén, Spain. His current research interests include multilabel classification, imbalance problems, evolutionary computation, neural network design, deep learning, time series prediction, and regression tasks.

Activities

Employment (1)

Universidad de Jaén: Jaén, Andalucía, ES

Profesor Titular de Universidad (Informática)
Employment
Source: Self-asserted source
Rivera, A. J.

Works (50 of 61)

Items per page:
Page 1 of 2

Nets4Learning: A Web Platform for Designing and Testing ANN/DNN Models

Electronics
2024-11-08 | Journal article
Contributors: Antonio Mudarra; David Valdivia; Pietro Ducange; Manuel Germán; Antonio J. Rivera; M. Dolores Pérez-Godoy
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

DESReg: Dynamic Ensemble Selection library for Regression tasks

Neurocomputing
2024-05 | Journal article
Contributors: María D. Pérez-Godoy; Marta Molina; Francisco Martínez; David Elizondo; Francisco Charte; Antonio J. Rivera
Source: check_circle
Crossref

Analysis of Transformer Model Applications

2023 | Book chapter
Contributors: M. I. Cabrera-Bermejo; M. J. Del Jesus; A. J. Rivera; D. Elizondo; F. Charte; M. D. Pérez-Godoy
Source: check_circle
Crossref

NOSpcimen: A First Approach to Unsupervised Discarding of Empty Photo Trap Images

2023 | Book chapter
Contributors: David de la Rosa; Antón Álvarez; Ramón Pérez; Germán Garrote; Antonio J. Rivera; María J. del Jesus; Francisco Charte
Source: check_circle
Crossref

XAIRE: An ensemble-based methodology for determining the relative importance of variables in regression tasks. Application to a hospital emergency department

Artificial Intelligence in Medicine
2023-03 | Journal article
Contributors: A.J. Rivera; J. Cobo Muñoz; M.D. Pérez-Goody; B. Sáenz de San Pedro; F. Charte; D. Elizondo; C. Rodríguez; M.L. Abolafia; A. Perea; M.J. del Jesus
Source: check_circle
Crossref

Time Series Forecasting by Generalized Regression Neural Networks Trained With Multiple Series

IEEE Access
2022 | Journal article
Contributors: Francisco Martinez; Maria P. Frias; Maria D. Perez-Godoy; Antonio J. Rivera
Source: check_circle
Crossref

Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines

Information Fusion
2020 | Journal article
EID:

2-s2.0-85069698850

Contributors: Pulgar, F.J.; Charte, F.; Rivera, A.J.; del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A First Approximation to the Effects of Classical Time Series Preprocessing Methods on LSTM Accuracy

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2019 | Book
EID:

2-s2.0-85067454211

Contributors: Trujillo Viedma, D.; Rivera Rivas, A.J.; Charte Ojeda, F.; del Jesus Díaz, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Automatic Time Series Forecasting with GRNN: A Comparison with Other Models

2019 | Book chapter
Contributors: Francisco Martínez; Francisco Charte; Antonio J. Rivera; María P. Frías
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Automating Autoencoder Architecture Configuration: An Evolutionary Approach

2019 | Book chapter
Contributors: Francisco Charte; Antonio J. Rivera; Francisco Martínez; María J. del Jesus
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

Dealing with difficult minority labels in imbalanced mutilabel data sets

Neurocomputing
2019 | Journal article
EID:

2-s2.0-85029618729

Contributors: Charte, F.; Rivera, A.J.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

predtoolsTS: R package for streamlining time series forecasting

Progress in Artificial Intelligence
2019 | Journal article
EID:

2-s2.0-85067250925

Contributors: Charte, F.; Vico, A.; Pérez-Godoy, M.D.; Rivera, A.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

REMEDIAL-HwR: Tackling multilabel imbalance through label decoupling and data resampling hybridization

Neurocomputing
2019 | Journal article
EID:

2-s2.0-85029575439

Contributors: Charte, F.; Rivera, A.J.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A methodology for applying k-nearest neighbor to time series forecasting

Artificial Intelligence Review
2019-10-21 | Journal article
Contributors: Francisco Martínez; María Pilar Frías; María Dolores Pérez; Antonio Jesús Rivera
Source: check_circle
Crossref
grade
Preferred source (of 2)‎

A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2018 | Book
EID:

2-s2.0-85057071604

Contributors: Pulgar, F.J.; Charte, F.; Rivera, A.J.; del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

AEkNN: An autoencoder kNN–based classifier with built-in dimensionality reduction

International Journal of Computational Intelligence Systems
2018 | Journal article
EID:

2-s2.0-85066340097

Contributors: Pulgar, F.J.; Charte, F.; Rivera, A.J.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Dealing with seasonality by narrowing the training set in time series forecasting with kNN

Expert Systems with Applications
2018 | Journal article
EID:

2-s2.0-85043460486

Contributors: Martínez, F.; Frías, M.P.; Pérez-Godoy, M.D.; Rivera, A.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the Cometa data repository

Neurocomputing
2018 | Journal article
EID:

2-s2.0-85042128332

Contributors: Charte, F.; Rivera, A.J.; Charte, D.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass

Computers and Chemical Engineering
2017 | Journal article
EID:

2-s2.0-85014093400

Contributors: Charte, F.; Romero, I.; Pérez-Godoy, M.D.; Rivera, A.J.; Castro, E.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

MEFASD-BD: Multi-objective evolutionary fuzzy algorithm for subgroup discovery in big data environments - A MapReduce solution

Knowledge-Based Systems
2017 | Journal article
EID:

2-s2.0-84994174430

Contributors: Pulgar-Rubio, F.; Rivera-Rivas, A.J.; Pérez-Godoy, M.D.; González, P.; Carmona, C.J.; del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

On the impact of imbalanced data in convolutional neural networks performance

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2017 | Book
EID:

2-s2.0-85021778345

Contributors: Pulgar, F.J.; Rivera, A.J.; Charte, F.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Estimating the maximum power delivered by concentrating photovoltaics technology through atmospheric conditions using a differential evolution approach

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2016 | Book
EID:

2-s2.0-84964007917

Contributors: Carmona, C.J.; Pulgar, F.; Rivera-Rivas, A.J.; del jesus, M.J.; Aguilera, J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Multilabel classification: Problem analysis, metrics and techniques

Multilabel Classification: Problem Analysis, Metrics and Techniques
2016 | Book
EID:

2-s2.0-85006335487

Contributors: Herrera, F.; Charte, F.; Rivera, A.J.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

On the impact of dataset complexity and sampling strategy in multilabel classifiers performance

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2016 | Book
EID:

2-s2.0-84964054564

Contributors: Charte, F.; Rivera, A.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

R ultimate multilabel dataset repository

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2016 | Book
EID:

2-s2.0-84964054493

Contributors: Charte, F.; Charte, D.; Rivera, A.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Recognition of activities in resource constrained environments; reducing the computational complexity

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2016 | Book
EID:

2-s2.0-85009786854

Contributors: Espinilla, M.; Rivera, A.; Pérez-Godoy, M.D.; Medina, J.; Martínez, L.; Nugent, C.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A differential evolution proposal for estimating the maximum power delivered by CPV modules under real outdoor conditions

Expert Systems with Applications
2015 | Journal article
EID:

2-s2.0-84926643988

Contributors: García-Domingo, B.; Carmona, C.J.; Rivera-Rivas, A.J.; Del Jesus, M.J.; Aguilera, J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Addressing imbalance in multilabel classification: Measures and random resampling algorithms

Neurocomputing
2015 | Journal article
EID:

2-s2.0-84930273620

Contributors: Charte, F.; Rivera, A.J.; del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Co<sup>2</sup>RBFN-CS: First approach introducing cost-sensitivity in the cooperative-competitive RBFN design

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2015 | Book
EID:

2-s2.0-84937400529

Contributors: Pérez-Godoy, M.D.; Rivera, A.J.; Charte, F.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation

Knowledge-Based Systems
2015 | Journal article
EID:

2-s2.0-84944354565

Contributors: Charte, F.; Rivera, A.J.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

QUINTA: A question tagging assistant to improve the answering ratio in electronic forums

Proceedings - EUROCON 2015
2015 | Conference paper
EID:

2-s2.0-84961695915

Contributors: Charte, F.; Rivera, A.J.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Resampling multilabel datasets by decoupling highly imbalanced labels

Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
2015 | Conference paper
EID:

2-s2.0-84932146148

Contributors: Charte, F.; Rivera, A.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Resampling multilabel datasets by decoupling highly imbalanced labels

Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
2015 | Conference paper
EID:

2-s2.0-84958533469

Contributors: Charte, F.; Rivera, A.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Concurrence among imbalanced labels and its influence on multilabel resampling algorithms

2014 | Book
EID:

2-s2.0-84902509247

Contributors: Charte, F.; Rivera, A.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification

2014 | Journal article
EID:

2-s2.0-84907817318

Contributors: Charte, F.; Rivera, A.J.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

MLeNN: A first approach to heuristic multilabel undersampling

2014 | Book
EID:

2-s2.0-84906347859

Contributors: Charte, F.; Rivera, A.J.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

MLeNN: A first approach to heuristic multilabel undersampling

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2014 | Book
EID:

2-s2.0-84958553194

Contributors: Charte, F.; Rivera, A.J.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Training algorithms for Radial Basis Function Networks to tackle learning processes with imbalanced data-sets

2014 | Journal article
EID:

2-s2.0-84907532927

Contributors: Pérez-Godoy, M.D.; Rivera, A.J.; Carmona, C.J.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A first analysis of the effect of local and global optimization weights methods in the cooperative-competitive design of RBFN for imbalanced environments

2013 | Conference paper
EID:

2-s2.0-84893601045

Contributors: Perez-Godoy, M.D.; Rivera, A.J.; Del Jesus, M.J.; Martinez, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A first approach to deal with imbalance in multi-label datasets

2013 | Book
EID:

2-s2.0-84884913245

Contributors: Charte, F.; Rivera, A.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A performance study of concentrating photovoltaic modules using neural networks: An application with CO<sup>2</sup>RBFN

Advances in Intelligent Systems and Computing
2013 | Book
EID:

2-s2.0-84868286270

Contributors: Rivera, A.J.; García-Domingo, B.; Del Jesus, M.J.; Aguilera, J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Characterization of Concentrating Photovoltaic modules by cooperative competitive Radial Basis Function Networks

2013 | Journal article
EID:

2-s2.0-84872038963

Contributors: Rivera, A.J.; García-Domingo, B.; Del Jesus, M.J.; Aguilera, J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Improving multi-label classifiers via label reduction with association rules

2012 | Book
EID:

2-s2.0-84858826037

Contributors: Charte, F.; Rivera, A.; Del Jesus, M.J.; Herrera, F.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A study on the medium-term forecasting using exogenous variable selection of the extra-virgin olive oil with soft computing methods

2011 | Journal article
EID:

2-s2.0-79956151060

Contributors: Rivera, A.J.; Pérez-Recuerda, P.; Pérez-Godoy, M.D.; Del Jesús, M.J.; Frías, M.P.; Parras, M.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A summary on the study of the medium-term forecasting of the extra-virgen olive oil price

2011 | Book
EID:

2-s2.0-81055147979

Contributors: Rivera, A.J.; Pérez-Godoy, M.D.; Del Jesus, M.J.; Pérez-Recuerda, P.; Frías, M.P.; Parras, M.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Multi-label testing for CO<sup>2</sup>RBFN: A first approach to the problem transformation methodology for multi-label classification

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2011 | Book
EID:

2-s2.0-79957932195

Contributors: Rivera, A.J.; Charte, F.; Pérez-Godoy, M.D.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

A preliminary study on mutation operators in cooperative competitive algorithms for RBFN design

2010 | Conference paper
EID:

2-s2.0-79959410025

Contributors: Pérez-Godoy, M.D.; Rivera, A.J.; Carmona, C.J.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Analysis of an evolutionary RBFN design algorithm, CO<sup>2</sup>RBFN, for imbalanced data sets

Pattern Recognition Letters
2010 | Journal article
EID:

2-s2.0-77956395103

Contributors: Pérez-Godoy, M.D.; Fernández, A.; Rivera, A.J.; Del Jesus, M.J.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

Applying multiobjective RBFNNs optimization and feature selection to a mineral reduction problem

2010 | Journal article
EID:

2-s2.0-77549084650

Contributors: Guillén, A.; Rubio, G.; Toda, I.; Rivera, A.; Pomares, H.; Rojas, I.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier

CO<sup>2</sup>RBFN for short and medium term forecasting of the extra-virgin olive oil price

Studies in Computational Intelligence
2010 | Book
EID:

2-s2.0-77951676441

Contributors: Pérez-Godoy, M.D.; Pérez-Recuerda, P.; Frías, M.P.; Rivera, A.J.; Carmona, C.J.; Parras, M.
Source: Self-asserted source
Rivera, A. J. via Scopus - Elsevier
Items per page:
Page 1 of 2

Peer review (13 reviews for 3 publications/grants)

Review activity for Neurocomputing. (3)
Review activity for Progress in artificial intelligence. (7)
Review activity for SoftwareX. (3)