Personal information

Activities

Employment (1)

Purdue University: IN, IN, US

2022-08-22 to present | Ph.D. student (School of Mechanical Engineering)
Employment
Source: Self-asserted source
Amirhossein Mollaali

Works (6)

Deep operator learning-based surrogate models with uncertainty quantification for optimizing internal cooling channel rib profiles

International Journal of Heat and Mass Transfer
2024 | Journal article
EID:

2-s2.0-85174303711

Part of ISSN: 00179310
Contributors: Sahin, I.; Moya, C.; Mollaali, A.; Lin, G.; Paniagua, G.
Source: Self-asserted source
Amirhossein Mollaali via Scopus - Elsevier

A Physics-Guided Bi-Fidelity Fourier-Featured Operator Learning Framework for Predicting Time Evolution of Drag and Lift Coefficients

arXiv
2023 | Other
EID:

2-s2.0-85179159853

Part of ISSN: 23318422
Contributors: Mollaali, A.; Sahin, I.; Raza, I.; Moya, C.; Paniagua, G.; Lin, G.
Source: Self-asserted source
Amirhossein Mollaali via Scopus - Elsevier

Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles

arXiv
2023 | Other
EID:

2-s2.0-85163735568

Part of ISSN: 23318422
Contributors: Sahin, I.; Moya, C.; Mollaali, A.; Lin, G.; Paniagua, G.
Source: Self-asserted source
Amirhossein Mollaali via Scopus - Elsevier

Deep Operator Learning-Based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles

SSRN
2023 | Other
EID:

2-s2.0-85161146073

Part of ISSN: 15565068
Contributors: Sahin, I.; Moya, C.; Mollaali, A.; Lin, G.; Paniagua, G.
Source: Self-asserted source
Amirhossein Mollaali via Scopus - Elsevier

A Physics-Guided Bi-Fidelity Fourier-Featured Operator Learning Framework for Predicting Time Evolution of Drag and Lift Coefficients

Fluids
2023-12 | Journal article | Author
Contributors: Amirhossein Mollaali; Izzet Sahin; Iqrar Raza; Christian Moya; Guillermo Paniagua; Guang Lin
Source: check_circle
Multidisciplinary Digital Publishing Institute
grade
Preferred source (of 2)‎

A New Methodology to Deal with the Multi-phase Degradation in Rolling Element Bearing Prognostics

Smart Innovation, Systems and Technologies
2020 | Book
EID:

2-s2.0-85091280579

Part of ISSN: 21903026 21903018
Contributors: Mollaali, A.; Behzad, M.; Mirfarah, M.
Source: Self-asserted source
Amirhossein Mollaali via Scopus - Elsevier